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Outline

* Domains
— Cryo-EM Maps
— Tomographic
— PDB structures (shape), Properties (electrostatics,
hydrophobicity)
* Techniques

— Image Processing (Scalar/Vector Filtering, Contrast
Enhancement, Skeletonization, InPainting)

— Finite Element Meshing (Linear, Higher-Order)
— Analysis (Area, Volumes, Combinatorics, Topological)
— Compression (Hierarchical, Progressive)

— Visualization (Surface+Volume Rendering, Texture
Rendering)
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Imaging to Structure to Modeling to
Visualization

Cryo-EM - Anistropic and
Vector Diffusion
Filtering > Structure
Segmentation > Sub-
Atomic Modeling >
Functional Analysis
-~ Visualization

(Collaborators: wah Chiu,NCMI, Baylor
College of Medicine, A. Sali, UCSF)

@ Center for Computational Visualization **Sponsored by NSF-ITR

Institute of Computational and Engineering Sciences
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Rice Dwarf Virus
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would Image Filtering Help
Structure Determination ?

After anisotropic diffusion
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Image Filtering: Gaussian Vs
Bilateral
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Bilateral Filtering

* Weighting Function
(=8 (f(0)-f(©&)
2 2
h(x, é:) — e ZO'd e 20',,

where o, and o, are parameters and f(.) 1s the image intensity value.
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Non-Linear Filtering (using PDES)

Diffusion Equation ==Weighted Gaussian
0,6~ div(g(V )V ) =0

where g(.) is a decreasing scalar function, e.g., €V ¢] =

1
1+ |Vl 142
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Bilateral Filtering
(wen Jiang et,al., JSB, 2003)
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Bilateral Filtering on RDV Map
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Anisotropic Diffusion (AD)
Filtering

Diffusion Equation

8t¢—div(a(‘v¢d

Vo) =0

where a stands for the diffusion tensor determined by local curvatures.
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Finite Element Method for Anistropic
Diffusion (Bajaj, Xu 2002,TOG)

Model
Orx(t) — div(a(z)V ypx(t)) = 0

a(x) is symmetric, positive definite matrix

Variational form

(at'x(t) Q)M(t) +( (t)x(t)b M(t)e)TM(t) =0,
VO eC (M(t)) where
(f7 g)M: fogdiE, (¢7¢)TM: fM¢T¢d£B

e How to represent M(t) ?

e How to choose @ ?
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L=

Solution of the linear system
(M" + 7L™")C((n + 1)7) = M"C(nT)
((¢Z) ¢]) )@] | C(t) — [Cl(t),...jcm(t)]

m

((VM(RT)¢Z7 vM(nT)¢])TM(nT)) i

6,j=1
e M™ and L™ are sparse.

e M™ is symmetric and positive definite.
e [ is symmetric and nonnegative definite.

o M™ + L™ is symmetric and positive definite.

The system is solved by a conjugate gradient method.
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Choice of Anisotropic Diffusion Tensor

Let (M (z), v (), be the principal curvature directions of ~ M(¢)

at point z(f) Let N(z) be the normal at that point.

Then any vector £ = OéU(l)(x) -+ 60(2)(37) ON(x)
And define @, such that
w2 = glk)av®(z) + g(k2) B0 (z)+ SN (@)

where () N SS)\
S p—
7 { s >

A > ( is a given constant.
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Rice Dwarf Virus
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Anisotropic Gradient Vector Diffusion
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How AGVD Helps Image Segmentation ?

« Fast Marching Method

— Initial seed points
— Stopping criterion

« Use AGVD to locate seed points
— Compute min/max critical points
(discard saddle critical points)
— All such critical points are used as seeds
— Advantages: automatic, close to centers of homogenous regions,

robust to noise due to vector diffusion.
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Compute Critical Points Using AGVD
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Stopping Criteria Using Multiple-Contour

e Multiple-Contour
— Group the critical points (for example, two groups as follows:
max. critical points ==) feature & min. critical points == background)
— Each seed initializes one contour, coupled with its group’s 1.D.
— Contours march simultaneously. Contours with same I.D. are merged
while contours with different I.D. stop on their common boundaries
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Boundary Segmentation after Filtering
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Boundary Segmentation of Inner Shell

540 A in diameter
P3 (114kDa) 29% of total protein
2 isoforms (A/B)
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Volumetric Skeletonization/
InPainting

* Pre-Processing for Docking Structures (Match & Fit)

Original Filtered
Map Skeleton Map
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How GVD Helps Image Skeletonization ?

« Use GVD to locate critical points

— Include minimum/maximum/saddle critical points

 Start from saddle points; trace integral lines along the
diffused gradient vector field === Morse graph

e Prune the Morse graph for more meaningful skeletons

e Advantages:
— Robust to noise due to vector diffusion.

— Critical points are on the “skeletons” of features even for “flat”
regions.
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3D Morse Complex
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RDV: P3 monomer

Volume-rendering Isosurface Skeleton Skeleton with

InPainting
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RDV: P8 monomer

Volume-rendering Isosurface Skeleton Skeleton with

another 1sosurface
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BacteriorRhodopsin/Lipid Complex (PDB: id=1c3w)

Volume-rendering Isosurface Skeleton Skeleton with

InPainting
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Tomographic Imaging to Structure to
Analysis & Visualization of Hearing
Machinery

cochlea

Tomographic Molecular
Imaging = Anistropic
Diffusion Filtering >
Classification,
Segmentation,Skeletoniz
ation of 3D Density
Maps - Quantitative
Structure Analysis
- Visualization

(Ccollaborator: Manfred Auer,
Jim Hudspeth Rockefeller
University and NYU Medical

Q Center for Computational Visualization Sciences)
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Image Contrast Enhancement (contd.)

Tip structure of B280a (Left: original Right: enhanced)
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Skeletons of ActinBundle (B280a)

e 2D Electron tomogram

-

C

&y
‘t-f.l.

d & X i

'4. ...l 'h—‘;_.

PO
il !.‘- *._';it.

Original image SMM (isotropic)

Skeletons >>

Q Center for Computational Visualization
_ Institute of Computational and Engineering Sciences

Department of Computer Sciences

University of Texas at Austin

Oct 2003



Skeletons of ActinBundle (B280a)
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Segmentation of TipLink (B206a)
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Segmented Tip Link (B206)

Bajaj, Zeyun, Auer, JSB,
2003 to appear.
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Skletonization/InPainting

* 3D Electron Tomogram

erall volume Skeletons Skeletons with density map
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Atomic Level Structure to Simulation to
Analysis to Protein Function

PDB - Finite Element =0 =~ = -~ —

] - [ i Vlune W o e . ]:]
Meshes with Properties

- Poisson Boltzmann

Calculations = e | o
B [ —

Flexible Docking c : )
. . . ollaborators: N. Baker (Wash U), D.
~Function Fmgerprlnts Goodsell(Scripps), A. McCammon (UCSD),

A. Olson (Scripps), M. Sanner(Scripps))
**Sponsored by NSF-NPACI-

0 Center for Computational Visualization Interaction Environments (BiO-Alpha)
Institute of Computational and Engineering Sciences

Department of Computer Sciences Oct 2003




Compressed Volumetric Representations of
Structures & Properties
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Volumetric Electron Density
(Implicit Solvent Model)

The electron density in the unit volume at point r :
p(r; X) = N [dv'yp*(z; X)(z; X)

where x denotes the collection of electronic space and spin
coordinates and X the collection of nuclear coordinates.

Common approximation = the summation of individual
atomic electron charge distributions:

pi(r) = exp(Fr — B))

where B; <0 is a blobby parameter and I?; is the van der Waals
radius of the atom

0 Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin Oct 2003




Volumetric Electrostatic Potential
(Baker, McCammon 2002: APBS)

A common model for evaluating the molecules’ electrostatic
properties 1s the Poisson-Boltzmann equation.

— V - [e(xrVV(r)] + kE*(r)sinh(V(r)) = p(r)

where (r)is the dielectric properties of the solute and
solvent, k2 is the ionic strength of the solution and the
accessibility of ions to the solute, and p(r) is the distribution
of solute atomic partial charges.
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Finite Element Models

— AcetylCholinesterase (2573, 66MB)
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The active site groove is inside
the red box. Adaptive meshes
are generated in order to keep
the accuracy of the groove,
and reduce the number of
elements at the same time.

94847 vertices and
497327 tetra

Zhang, Bajaj, Sohn,
, ACM Solid
@ Center for Computational Visualization Modeling 2003
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Department of Computer Sciences University of Texas at Austin Oct 2003




Finite Element
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Electrostatic Potential on MACHE
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HIV-1 Reverse Transcriptase In Complex With
A Polypurine Tract RNA (12,139 atoms)
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HIV-1 Reverse Transcriptase In Complex With
A Polypurine Tract RNA (12,139 atoms)

b -

Compression: 18.5:1 Error: 2.9%
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HIV-1 Reverse Transcriptase In Complex With
A Polypurine Tract RNA (12,139 atoms)
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Background (Classical Wavelet
Representations)

Key 1dea: refinement

A ¥ A ¥ A
0 | i 0 1 1/2 3/2 1 2

#(x) 142x)  #Q2x-1) Lp(2x-2)
p(x)=> hlklp(2x—k)  with  h[k]={L,1,1}

Refinable functions are called scaling functions

0 Center for Computational Visualization
Institute of Computational and Engineering Sciences
' ' ' ' Oct 2003
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Wavelet Representations

Wavelets are also linear combinations of
scaling functions

w(x)= D hklp(2x—k)
Usual design criteria for 4[k] and Alk]

— finite length => makes wavelet and scaling
functions compactly supported

— Vanishing moments:

Iw(x)xmdx =0

0 Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin

Oct 2003



2"d Generation Wavelets Based on Hierarchical
Basis and a Lifting Scheme
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Original data set to be
Compressed by Linear
Hierarchal Basis
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Linear Hierarchal Basis
Total Compression(TC):37

Haar Wavelets
TC:20

0 Center for Compu T "
Institute of Computational and Engineering Sciences
Oct 2003
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Linear Hierarchal Basis
Total Compression:37

Haar Wavelets
TC:33

0 Center for Computational Visualization
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Linear Hierarchal Basis
TC:70.8

0 Center for Computational Visualizatn -
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Oct 2003
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Linear Hierarchal Basis
TC:206.9

Haar Wavelets
TC:206.9

0 Center for Computational Visualization "
Institute of Computational and Engineering Sciences
Oct 2003

Department of Computer Sciences University of Texas at Austin



Linear Hierarchal Basis
TC:571
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Visualization of Hemoglobin Dynamics
Interrogative Volumetric Video (VolVis2002)
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PSNR (dB)

PSNR (dB)

Rate Distortion (2EZP)
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Rice Dwarf Virus(Smoothed)

Original
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Rice Dwarf Virus(Smoothed)

TC=31.6, PSNR =42.4dB

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences Oct 2003




Rice Dwarf Virus(Smoothed)

TC=120.3, PSNR =36.5dB
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Rice Dwarf Virus(Smoothed)

TC=328.3, PSNR =31.6dB
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Multi- Resolution Volume Exploratoration
(http://www.1ices.utexas.edu/CCv/software/)

Volume Rover (CORBA client)
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Multi-Level Visualization

o

volume
Rendering

Hemoglobin

Coloring
Vua Residues

Backbone chains

Coloring via Secondary structures
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Microtubule
(Graphics Accelerated Texture-Impostors)
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(TAQT: Topology Analyses & Quantitative Tools)
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The Contour Spectrum (IEEE Vis '97)
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Quantitative Visualization of Hemoglobin Dynamics
Interrogative Volumetric Video (VolVis2002)
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Static Contour Spectrum
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Static Contour Spectrum
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Static Contour Spectrum
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Time-Varying Contour Spectrum

Hemoglobin Surface Area/Volume Change over Time

hemoglobin surface area change (isoval:1.0) hemoglobin volume change (isoval:1.0)
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Gradient Magnitude
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Time-Varying Contour Spectrum

Interval Volume Change over Time

hemoglobin interval volume change(isoval:0.5,10.0)
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Isovalue 0.5(outer surface) and 10.0(inner surface)
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Time-Varying Contour Spectrum

uantification around Heme Structure
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Time-Varying Contour Spectrum

* Quantification around Heme Structure

surface area(isoval:1.0) change near one heme hemoglobin volume change(isoval:1.0) near one heme
structure structure
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Analysis using the TIME CONTOUR TREE

 Oxygenated Hemoglobin ( T=1) -

<isovalue = 31>
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Analysis using the TIME CONTOUR TREE

* Intermediate step ( T=15)
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Analysis using the TIME CONTOUR TREE

* Deoxygenated Hemoglobin ( T=30 )

<isovalue = 31>
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Modeling, Analysis and Visualization Software
(http://www.ices.utexas.edu/CCv/software/)

« Desktop and Parallel >
Tools .

- Isocontouring and
volume rendering
software on COTS

- Multi-Display
Clients using
programmable
graphics hardware

- Integration with
the Grid underway
for Remote
Visualization
Services
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whats 1n the Future ?

» Computational Modeling for Nano-
Machines and Nano-Medicine

— Psuedo-atomic model generation for bio-molecular
machines, and their assemblage properties

— Mechanisms for capturing knowledge of
macromolecular flexibility and inferring functionality

— Understanding interactions between molecular
assemblies, biological and synthetic through
biochemistry/biophysics simulations
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Computational Visualization

Domain ]
AT " Modeling
: Meshes,
E Equations — -
Imaging Simulation! *To identify and
— perceive information
: Functions for model calibration
AP (Functionals) | or scientific
Ve L LD » Perceptual | -
(Datasets) Visuaﬁzation discovery
I * Model Analysis,
Analysis / Interrogation YISUHIIZGt{On and
interrogation with
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Molecular Electrostatics Vvisualization

Isosurfaces of Electrostatics
potential, and rendered as a
Function on an Isosurface of
Red negative Electron Density

Blue positive

White neutral
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Surface curvatures

The two main surface curvatures in differential geometry
are the Mean Curvature H and the Gaussian curvature K.

Let k.., and k, . be the minimum and maximum curvatures
at a point. Then,

H = 1/2(kmin T kmax) and
K= kminkmax
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Protein Kinase from Rat (1a06)

Mean curvature

Gaussian curvature
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Gaussian curvatures on Mouse AcetylCholinesterase
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Mouse AcetylCholinesterase

Gaussian curvatures
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Mouse AcetylCholinesterase

Mean curvatures
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Mouse AcetylCholinesterase

Mean curvatures
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