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THE PROBLEM

¢ [ he ribosome (s a
molecular machine .

eIt has 5C chains
50 protein
6 RNA

et has 10559
residues
6OCS protein
L4 RNA

Venki Ramakrishnan Picture of Year 2008




OQUTLINE

eFew normal modes simulate sugoestive motion.

*nonledge—based potentials work for refinement.
o Simplified models are same as all—atom models .
°Simulate sugaestive motion of cellular machinery.
°Anouledge—based potentials give stobility & modes .
° [he chain order paradox .

°Special solution of generalised eigenvalue eguation.




Molecular Motion




TWO ESSESTIAL REQUIREMENTS

Potential Er\e\r% Surf aces .

‘Methods to Move Over Surface.




bnergy , U ——

MOVING OVER ENERGY SURFACE

@ bnergy Minimiz ation drops

into local minimum .

@ Molecular Dﬁn AM{CS uses

thermal energy to move
Smootkltj over surface .

—— Position
¢ @ Monte Carlo Moves are
- random . Accept with

probability exp (“AUAT).
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MOLECULAR POTENTIAL ENERGY

U= Z%Kb(b bo) Z%KQ(Q 9,

All Bonds All Anoles

+ 2. K L1- cos(nd+d)]

All Tomor\ Angles

+ T e[ (2%

All nonbonded pairs

+ Z 332q, q'J /“' over many

All partial charges | terms
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MOLECULAR DYNAMICS THEORY

v @ All atoms move tooether .

@ Forces betueen atoms change with time.

. ®Analytical solution to oive x(t)
; and \(t) is impossible .

9 @ Numerical solution s trivial.

x(t+at)= %) + v@) ot +[4a®-alt-ad T at'/c

New position Old position  Old velocity Acceleration
v(t+at)= V(E) + [2a(t +at) + Say) -a.({:-Al;)] at/, |
New velocity Old velocity Acceleration Time step,
Numbe(r of coorolisw\tes TQMPQY ature At X must 'De
u = 4 : % T very small at
kinetie ~ 2 MiVily) = i\'l kB T ?15
Kinetic eneroy Atomic masses , velocities Boltsmann’s 10 seconds
— or 0.001 ps.

Total energy (Upotential + Uianetic) must not change with time.




Normal Modes




NORMAL MODE DYNAMICS

*In regular Molecular Dynamics, we solve the
exact eguations of motions approximately .

°In Normal Mode Dynamics, we solve the
opproximate eguations ot motion exactly.




BASIC THEORY

[\rdko\t are normal modes? ]

@A string attached at both ends:

k=
Get o standing wave of freguency v = L‘Vo ae't
Amplitude s proportional to 1/v g%f k=2

Each mode can be excited independently. @eg kel

@ Discrete point masses: C is the spring
force constant

UCx) = 172Gt Now F = ma = —Cx or mdlx/dt! = -G = \/
Solution is x(t) =acos (ot +J° ), with w :s;rt((/ )

— X —>

Get amplitude, a, by the eguipartition tkeorem
<Epotentml> = 1/1C <x2> /2 W T <x P (s the MQW\

value of xt.

C
o
¢ i

Thus, a = sgrt (UT/C) as <x> =41/2a for a cosine wave.




NORMAL MODES IN HIGH DIMENSION
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o Expand energy tunction

about mnimum .

@ Approximate as & guadratic function

F(x ,3> = sz + th‘ + Cﬂz.




NORMAL MODES IN HIGH DIMENSIONS

For n atoms, N = 3n so it can

be very lotg'.

@ [ Le normal mode directions are
the ma jor and minor axes of the

ellipse .

@ All other motion is a linear
combination of these basic

motions .

- Solv&ng for the modes reguires a
matrix that s N X N, where N

in number of o\egrees of freedom .




MOLECULAR POTENTIAL ENERGY

U- SR+ TR
Bonds All peoles

T
+2 K¢[1-Cos(h<|>+5)] ]

All Torsion Angles

+ % e[ (W-2(%]

All nonbonded pairs
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+ 5 332qig v T

All partial charges  springs.
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POTENTTAL ENERGY IN TORSION SPACE
¥
U= Z K¢[1'C03(h<|>+:)] X¢
All' Torsion Angles &

+Ze[("%)n-2(r%-ﬂ “ 1 T Yg

;‘“

U
o | —

All nonbonded pairs P
Al?;:artcal c&r'g?;“/ — 9 0

@ A protein with N residues has about &N
((p,Lp, X) single bond torsion anglles .
® The same protein has about SON

Cartesian coordinates (x Y ,}).




THEORY OF NORMAL MODES T

® Assume Potential energy, V, is guodratic function of Q.

v--—Z Vi (i)(44) é
1

® This means that Vij = d N/ A(PLO\(PJ

\/

_(p_.

@ Assume Kinetic energy, |, (s guadratic fw\ctcon of J(P/dt .

T= 12, T, (4h/ay (di/dd

\.

Note the symmetry

between Potential and

Kinetic eneray .

~

J

® This means that Tij = AT/ A(A(PL/ dt ) A(o\(PJ/ dt )




THEORY OF NORMAL MODES II

@ Solve for P(t) using Lagrangian approach.

2.Tej (g /deh) - 2V A@.
® Try a periodic tunction tor P(t):
A(PJO:} — Z ALJ cos ((DL{Q
o\z(PJ(tV A? = Z ALJ ®" cos ((ch}

@ In Matrix notation the Lo\g\ro\ngéo\n eguation is;

TA (DZ = VA

|

Ar\alogous to ]

ma = k

.

This is Eégenvo\lue
eguation that s
eo«sélﬂ solved..

\

/




Su%estéve Mot (on




RATES OF VIBRATION

Number of modes

0 50 100 150 200 250

Fr(cwe.ncﬂ (')

® Peolc near 30 cm™!, which is a period of 1 ps.
@ Louest freguency is at 3 em™ or 10 ps.

@ There are 12 modes below 10 em™.

F}:oy- Bov‘mg Fancreahe Thys\‘m LTahibik
58 rescdues, 208 tonion Mﬁl""

300

@ [here s a broad
range of torsion
angle mode
freguencies.

-

L

Levitt et al. J.
Mol. Biol. (1985)
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AMPLITUDES OF VIBRATION

|‘Almost all the

motion of the

CA atoms comes
from the lowest
Freguer\cg modes .

CA Atoms

Amplitude ,

Torsion Angles @ Tlere (s high—

| MMT freguency motion

of the torsion
w\gles .

Ar\gles

0 35 . 120 150
Freﬁuenct, in cm .

®The CA Amplitude is the RMS movement of all CA atoms as a
result of activating the particular mode.

®The Torsion Angle Amplitude is the RMS movement of all torsion
angles as a result of activating the particular mode.




BPTT NORMAL MODES

AT HIGH
TEMPERATURE




Frvpsin fakibitor

Three of the
Jour lowest modes,

the thirtieth mode

and a combination of
the eight lowest modes




LYSOZYME MODES

Active Site

-

An inhibitor , which is colored in green, is bound in the active site.
The inhibitor is not included in the normal mode calculations.

©Michael Levitt 10




LYSOAYME NORMAL
MODES AT HIGH
TEMPERATURE




Hen Egg White Lysozyme

The two lowest modes
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LONG HISTORY

1776 Tanaka & Scheraga Contacts, 20 types
1985 Miyazowa & Jemigan Contacts, 20 types
1990 Sipp! Dist anceDependent (DD)
1998 Somudrala & Moult DD, 167 types

2007 Summa £ Levitt DD, 167, Continuous




POWERED BY PDB GROWTH

197C: T anoka £ Sckemga (10) W?S:M%a;ma 2 Ie\mégo\r\ (100)

1990 Sippl (120) 1998:Samudrala & Moult (1200)
2007:Summa £ Levitt (10000)

100000 ¢ ‘
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@ (et distribution of
distances between pairs

of atom centers of a

1 [ﬁﬁttr@ctcve 1 [ﬁﬁ%w[?m particular type, e.q.
~ ~ D-OD1.. F-CD2.
2 =4
pd =4
| [ E—
- R . R @ Normalize and take log

to get Ene\r% score:
ELJ(Y)zl%(N(nJ‘}/N\ <YLJ>>

— ELJ(r) —




Refine Proteins

_




KNOWLEDGE-BASED POTENTTIAL ENERGY
T

U= SEK, (b-b) -3 iKy(9-8) T

All Bonds All Anoles

+ Z K [1- cos(h<|>+5)] - I

All Tomor\ Angles

+ Quintic Splines = | | /s = ) E
7 S AT
All nonbonded pairs | r
]
[ f——
Replace 1 and = with lookup tobles
L | /‘




CARTOON OF REFINEMENT TEST

N TG -d'
Coordinates




SUCCEEDS IN REFINING PROTEINS
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SHIFTS MAP ENERGY SURFACE

1ctf KB_0.1 1pdo KB 0.1

1ctf Encad 1pdo Encad




Reduced Models




NEEDED THEN , MORE USEFUL NOW

- - - - - P

7

.' ~ " A%
¢ \/E\K\
O

1 atom/residue , 1 DOF/residue

‘VﬁﬁNWVNAAJHJV\I\fx,\d\-- wwwwwww %
. T Fold protein with 1000
( T steps of minimi3 Gtion .
\&/, xxxxxxxxx ’)}
Y ?:fi ok Escape from local minima
\,. \%4 5\335 Q;L@ *% {gE with normal modes  jumps .
\\ i
- = T— — T [Lewitt & Warskeq
[ S W N Noture, 1775 |




KNOWLEDGE-BASED ENERGY IN TORSION SPACE

U= 2 Ky L1-cos(ng+d)]

All Torsion Angles

+ {uintic Splines .

All nonbonded pairs

Replace 5 \

with lookup
W& — |

£
A




M 4osin Motor




MYOSIN STRUCTURE

regulatory
S light chain
= neck

Essential light chain

Feqgutatory light chain

" essential
light chain

converter actin

binding
site

lower

Copwight 1353 Jobn Wiley and Sors, Inc. Al righis reservad

ATP
binding
site




MORPHING MYOSIN ( J




MYOSIN ALL-ATOM NORMAL MODE 1




MYOSIN 2PT NORMAL MODE 1




MYOSIN 1PT NORMAL MODE 1




Cellular M achinery




Nucleotides '7'

Make RNA ==

Make Protein

‘ Polﬂmer ase

Fold Protein
Protein

Ribosome




NUCLEOSOME NORMAL MODE 2




70S RIBOSOME NORMAL MODE 2
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Chaperonin Eu NORMAL MODE 1




ALL 1PT NORMAL MODE RUNS SO FAR

PDB_ID NRES %Prot  RMS(A)
1CTF 74 100.0 1.08
1VBX 176 56.8 1.07
1QA6 250 53.6 1.79
1MFQ 364 65.1 3.82
1M5K 424 47.2 2.51
1AO 1128 74.1 1.94
1KK7 1149 100.0 3.98
1SFO 4197 99.4 2.48
1Q3S 8768 100.0 2.21
70SR 10517 58.0 2.40




CPU Time (secs)

LINEAR CPU REQUIREMENT S

5000
4000

3000

2000

1000

0 2000 4000 6000 8000 10000
Number of Atoms




Problems




RNA POLYMERASE NORMAL MODE 1




USE GAPS TO MAKE ONE CHAIN

L

Start




USE ARM TO LINK TO FIXED POINT




EACH CHAIN HAS ITS OWN ARM

8)

0z"
GyA

46 ,‘J..
g

OxA

B
tZA tyA tX
® 2
Molecule A tyP 0
| txC ty©

>

~

./
/
Ve

Molecule C

Molecule D



GENERALTZED EIGENVALUE PROBLEM

VX = ATX

o/ <Poter\tml Er\erg@ matyix (S smgular.

* T (Kinetic Eneq@ matrix (s singular.




EIGENVECTORS LOOK WRONG
Different recommended methods give ditferent

etger\vectors .

RGG (QZVEC) from EISPAK
DDGEVX from LAPACK
FOLAEF from Harwell (NAG)

What (s correct?

©Michael Levitt 10




Solution




SOLVE TWO NORMAL EIGENVALUE PROBLEMS

VX =TXA V and T are real, symmetric but singular.
First solve TZ = ZQ to give T = ZQZ".

Now calculate the square root of the generalized inverse of T.
T =ZQ "Z" where Q"> =0if Q. is 0.

Transform the original eigenvalue equation as follows:

VX = TXA or VI ™’T"*X = T"*T"*XA

as T"*T"? =1 and T"*T"* =T (T is real and symmetric).
Multiply both sides by T™"* to get

(T*VT ) (T"X) = (T"*T")(T"X)A or HZ = ZA

where H = T*VT™"*. Solve for Z and A, calculate

X =T "7Z, and testby X' VX =A and X'TX =1.

©Michael Levitt 10



NOW ALL WORKS

¢ [he elgenvectors are alwaﬂs real .
¢ Solutions are alo\mﬂs obt ained .
¢ Insensitive to smgulan’cées.

¢ Insensitive to round—off error in V or T .




ICTE A VERY EASY TEST

One chain with 5S4 residues




ARM HAS NO EFFECT ON MONOMER

Ipt_GAP. 3pt_ARM Ranks up ta 210
2 , , 1.00
15 f
— 7
& ' —
.0 =,
{ 050 =
X AN
< -
S Q
S A
'y
ff.f-*”
0 0.00
15 20

0 5 .
Rank i




MODEL SYSTEM: TETRAMER 1ACS

Four chains in small tetramer (87 each )

©Michael Levitt 10
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MODEL SYSTEM: eXAAAATTTTAAAA

Tuwelve chains in G independent molecules




XAAAAT T T TAAAA ARMS

% | Expect groups of 6 as G independent rigid bodies

; . :_Onlﬁ see this for ARMs not GAPs

QZD EZé sero eigenvalues

LL]

> o}

@) ARM

1

TR GAP

LL]

A

@)

2 OO 5IO | | '1(I)O 15IO
MODE RANK

20C




RNA POLYMERASE NORMAL MODE 1




Future




METHODOLOGICAL TESTS

oA unigue part of the present work is the calculation of real
normal modes of large complexes in torsion angle space. Others
have used guasi elastic modes (Tirion modes) in Cortesion
space to look at simdar systems.

© Test done to establish the advantages of our method include:
¢ Is energy more harmonic with torsion angle variables?
e Do Tirion modes with torsion angle differ from normal modes?
® How important is domping?
©Are results better with 3pt and all—atom KB functions?

© Does number of o\egrees of freedom matter?




haperonin Mn—cpn NORMAL MODE 1




Chaperonin Mn—cpn NORMAL MODE ¢




OQUTLINE

okew normal modes simulate suggestive motion v
*Unowledoe—based potentials work for refinement v

e Simplified models are same as all—atom models v~
*Simulate suggestive motion of cellular machineryy”
*Unowledae—based potentials give stability & modes v
eThe chain order paradox v

°Solution in solution of ger\emlé}eo\ eigenvalue e;uation(
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The End




