
RCT in EMAN2 Tutorial

Getting Started:

Make sure you have the latest version of EMAN2. For now, you will need either the nightly build or
EMAN 2.05, available for download at http://blake.bcm.edu/emanwiki/EMAN2. In the future, you
should use EMAN2.1. You also need to download the test data associated with this tutorial, and then
untar it to get the simulated Ip3R dataset. For this tutorial, you will work with Ip3R1, a 1.3MDa
membrane protein. This data consists or a stack on simulated untilted image, and a stack of simulated
60 degree tilted images.

Introduction:

EMAN2 is an image processing software package directed towards electron microscopy data. It is
composed of a C++ core and a suite of python programs that implement higher-level data processing
functions. On top of this infrastructure, there is a GUI based data workflow framework, which will be
used and introduced in this tutorial.
This tutorial aims to guide the user through steps required to generate a 3D reconstruction using RCT
techniques. This tutorial uses simulated data to illustrate a clean example, in the real world, life is
usually not so easy. This tutorial focuses just on the steps required to make an RCT recon starting from
untilted and tilted data stacks. If you want guidance on picking untilted-tilted particle pair stacks, see
the tilt-validation tutorial.

Initializing a new project using e2projectmanger.py:

To begin a new project, move to your desired project directory and launch e2projectmanger.py, the
new EMAN2 GUI. A window should pop up as shown below:

First you need to set project parameters, so in the menu bar (the menu bar location is platform
dependent) click: Project->Edit. A dialog box will pop up. Here set the project parameters (then click
OK).

 Ip3R
Project Name Ip3R RCT
Project Icon Use default
Mass 1,300
CS 2.0
Voltage 200
Apix 1.88

Importing the simulated data:

Since we already have a stack of untilted images and a stack of tilted images, all we need to do is
import the particles. In the projectmanager workflow tree, click on the Particles tab. Next click on
Particle Import. This will load a GUI interface to e2import.py, which allows importing of particle
stacks into the current project. You want to find the particle stacks to import, so click on the browse
button in the GUI interface widget. This will launch a browser dialog box allowing you to search for
files. You should select tilt_particles.hdf and untilted_particles.hdf for import using multi select (ctrl +
click), then click OK. The files you want to import will now be listed in the option field import_files,
so click Launch to run the program. As a side note, you can click on the Command tab (to the right of
the GUI tab) to see the command that will be executed. Advanced users can edit this line to customize
behavior.

BTW: If you want to learn how to actually pick untilt-tilted particle pair stacks, see the tilt-validation
tutorial.

Building particle stacks:

After particle import, we want to build particle stacks. Click the Particle Sets Tab, listing options to
build particle stacks for processing. Then click Build Particle Sets, loading the GUI to build stacks for
processing.
In the GUI, click browse to search for stacks to build. The file browser will launch. Select all the stacks
corresponding to the untilted images. In this case there is only one stack, untilted_particles, but in most
projects there will be multiple stacks to process. Choose a name for the stack and write this name in the
option field 'stackname'. Click Launch to run the program, e2buildstacks.py. Do the same for the tilted
images, naming the stack tilted.

Generating reference free class averages using e2refine2d.py:

The first step towards actually making RCT reconstructions is to sort the data into self-similar classes.
For this step we use multiple statistical analysis techniques to produce reference free class averages.
e2refine2d.py implements this technology. To run e2refine2d.py in the context of e2projectmanager.py,
click the tab, Reference Free Class Averages listing options for reference free class averaging. In this
tab click Generate Classes – e2refine2d to load the e2refine2d.py GUI. There are many options for
e2refine, but we only need to alter a few from their default values. First click browse to and select the
untilted stack using the file browser. Click OK in the browser. Second set the option ncls, the number
of classes to 8. For RCT we want to have a large number of particles per class. Reducing the number of
classes achieves this, but at the cost of the particles in each class not being as 'self-similar'. Last, set the
option parallel to thread:X where X is the number of cores on your machine. Lick Launch to run
e2refine.py.
After the program has finished running (you can check the status by clicking on the task manager
button, 4th tool button from top), examine the class averages by clicking on Reference Free Class
Averages node. Do not click on the triangle shaped icon as that controls child expansion, as you have
previously done in this tutorial. Clicking in the text area of the node opens a table with e2refine2d
results. Open r2d_01 and find classes_08. Clicking on this file reveals several buttons at the bottom of
the browser. Click showstack to view your class averages. You should get something looking like the
image montage below. Normally your data is not this good, so when using real data, you'll need to note
any 'bad' classes to exclude from RCT processing. Bad classes are classes that have not black CTF
hallow(in real data) surrounding them or have no structure (look like a blobby disk).

Computing RCT recons for each class average using e2rct.py:

Finally, we create a RCT reconstruction for each class average using e2rct.py. Click on the Initial
Model tab listing options for initial model building. We want to do RCT, so click on Make Model -
e2rct to load the GUI interface to e2rct.py. Load the untilted stack, as before, by clicking on browse,
then selecting the untilted particles stack. Click OK to import into the GUI. Do the same for the tilted
images, and the classavg field, except you will need to browse to the r2d_01 directory first. Choose the
best-looking class averages stack, which will almost always be the class averages from the last
iteration.
Next we need to set the options for e2rct.py.

• stagetilt, set this value to 60 for Ip3R simulated data. This is the amount of simulated tilting. In
real data the value will be equal to the amount you tilted the stage during data collection.

• titlaxis, you can check this box to do a titlaxis correction, this only works if you picked particle
pairs using e2RCTboxer.py. If you imported them from another program, or you are using
simulated data as we are now, leave this box unchecked, as the simulated data all have the same
tilt axis.

• careject, list bad class averages you don't want RCT reconstructed. Since we are using
simulated data, we use all class averages, so leave this line blank. In real data list class averages
to reject in comma delimited form.

• minproj, set the minimum number of particles required to compute a RCT recon. Obviously 1
or 2 particles will not produce a decent 3D volume, so I recommend setting this value to 10

• align, check this box if your tilted particles need to be centered. Centering works by computing
an average, translationally aligning to this average, and then iterating the process. This may not
work well for highly elongated particles. For this dataset check this box.

• maxshift, set the maximum translational shift allowed during tilted particle centering. For the
Ip3R simulated dataset set this to 6 pixels.

• avgrcts, after creating an RCT for each class average, the RCT recons are aligned and averaged
to produce an optimal RCT recon, averaging away the missing cone. For this tutorial, check this
box.

• reference, without a reference with RCTs are aligned to each other, however, if you align to a
reference model, you can get improved results. For this tutorial we do not need a reference
because our data is unrealistically good.

• sym, specify the symmetry of your structure. You should only use this option if you provide a
reference AND this reference is aligned to the symmetry axis. If you don't have a reference, you
can run e2rct.py with no reference setting sym to 'c1'. Then you can align your RCT recon to its
symmetry axis using e2symsearch.py. Use this model, aligned to its symmetry axis, as your
reference and set sym to the correct symmetry. For this data, since we do not have a reference
leave the default set to 'c1'. You are welcome to try the above suggestion, but this tutorial will
not walk you through this.

• aligngran, the fineness of 3D alignment, usually 10 degrees is fine.
• weightrecon, check this box to perform a weighted average using particle population as the

weights. Leave this unchecked for the tutorial.

When you have set all the options, click Launch.

After e2rct.py finishes, open the file browser, by clicking on the folder icon in the projectmanager
toolbox. Browse to the rct folder and click on files named ‘rctrecon_??’ These are your RCT
reconstructions, one for each class average and rctrecon_00 corresponds to classaverage number zero in
the above class averages figure. Shown below is the Ip3R structure and Ip3R RCT reconstructions. Top
row, Ip3R structure; second row, RCT recon from class average number zero; third row, RCT recon
from class average number two; bottom row, the average RCT reconstruction generated by aligning
and averaging each RCT reconstruction. As you can see rctrecon_02 is much better quality than

rctrecon_00, and even better quality than the rctaverage. The low rctaverage quality is caused by low
quality RCT recons. Hence it is very important to remove any low quality rct recons from the average,
but this can be a bit problematic if you are doing a de novo reconstruction where you don’t know what
the structure looks like in the first place! To attempt a better RCT average, you can export the rctrecons
to a 3D stack using e2proc3d.py(see wiki page) and then use e2classaverage3d.py, which is used for
subtomogram averaging, to make the RCT average.

That’s it. I hope you have enjoyed this tutorial. Email: sludtke@bcm.edu for further
information/questions.

