
Deriving the OpenGL Perspective Depth Transformation
Kenneth E. Hoff III

Spring 2000

We define a viewing frustum in terms of the six planar boundaries defined by l, r, b, t, n, and f (represents left, right,
bottom, top, near, and far planes respectively). The eye (or center of projection) is at the origin, the viewing
direction is down the -Z axis, the projection or viewing plane is at z=-n, the near and far planes are defined as z=-n
and z=-f respectively, the viewplane window is defined by rectangle with x extents [l,r] and y extents [b,t] on the z=-
n plane, and the sides of the frustum are defined by the planes formed from the eye through the edges of the
viewplane window.

+X +Y

X=r Y=t

-Z -Z

X=l Y=b

Z=-n Z=-f Z=-n Z=-f

Top View Side View

The perspective depth transformation matrix is defined as from the geometry as follows (from the glFrustum call in
OpenGL):

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

'
'

'
'
('
'
(

'

'
(

'

))

0100

2)(00

020

002

),,,,,(

nf
fn

nf
nf

bt
bt

bt
n

lr
lr

lr
n

MfntbrlglFrustum

Our goal is to derive this matrix from the frustum geometry and the mapping between the eye-space points and
normalized device coordinates (NDC or screen space after the perspective divide). The resulting points in NDC
space are warped so that an orthographic projection will give the proper perspective viewing, lines will be preserved,
and the resulting z values will give the proper visibility relationships. We can transform a 3d point in eye space by
M to obtain a point in 4D homogeneous (or clipping) space, and then perform a normalization by dividing all
components by w to obtain a point in NDC coordinates:

!
!
!
!

"

#

$
$
$
$

%

&

)

!
!
!
!

"

#

$
$
$
$

%

&

*

w

z

y

x

z

y

x

clip
clip
clip
clip

eye
eye
eye

M

1

For eye points inside of the frustum:

+ ,wwzyx clipclipclipclipclip ,,, '-

If we perform the perspective divide (homogeneous normalization), we obtain NDC coordinates:

!
!
!
!

"

#

$
$
$
$

%

&

)

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

1
z

y

x

w

w

w

z

w

y

w

x

NDC
NDC
NDC

clip
clip

clip
clip

clip
clip

clip
clip

For points inside the frustum:

+ ,1,1,, '-zyx NDCNDCNDC

This means that all points in the frustum in eye space map to the unit cube in NDC space defined between [-1,1] for
x, y, and z components after the perspective depth transformation (perspective transformation and perspective
divide). More specifically, we have the following mapping:

Points in eye space Points in NDC space
Left and right planes x=-1and x=1 planes respectively
Bottom and top planes y=-1 and y=1 planes respectively
Near and far planes z=-1 and z=1 planes respectively

Note that in eye space, we are looking down the -Z axis, but in NDC space we are looking down the +Z axis. The Z
coordinates become negated in the perspective depth transformation:

-Z

+X

X=-1

X=1

+X

X=r

+Z

X=l

Z=-1 Z=1
Z=-n Z=-f

Transformation from eye space to NDC space warps points in the perspective frustum to a
rectangular, normalized viewing frustum where lines and depth values are preserved, and a simple
orthographic projection will give the proper view.

We will first combine the matrix multiplication and perspective division into one equation for each NDC coordinate
as a function of the input eye coordinates. We will then show how to derive each one of these equations from the
frustum geometry, the desired mapping between the frustum points and the NDC unit cube, and the following
properties of the perspective depth transformation:

! The x and y NDC coordinates will be the normalized coordinates of the eye space point projected onto the
viewplane (near plane).

! The z coordinate in NDC space will be transformed such that lines in eye space are transformed into lines
in NDC space. This is needed in order to allow for linear interpolation in screen space of depth values
during polygon rasterization that will preserve the proper visibility ordering.

Let's first write the equations for each component directly from the perspective depth transformation and the
perspective divide:

!
!
!
!

"

#

$
$
$
$

%

&

)

!
!
!
!

"

#

$
$
$
$

%

&

*

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

'
'

'
'
('
'
(

'

'
(

'

w

z

y

x

z

y

x

clip
clip
clip
clip

eye
eye
eye

nf
fn

nf
nf

bt
bt

bt
n

lr
lr

lr
n

1
0100

2)(00

020

002

We can rewrite this as four separate equations, one for each homogeneous (clip) component:

zw

zz

zyy

zxx

eyeclip
nf

fneye
nf
nfclip

eye
bt
bteye

bt
nclip

eye
lr
lreye

lr
nclip

')
'

'
(*

'
('

)

*
'
(

(*
'

)

*
'
(

(*
'

)

2)(

2

2

We can perform the perspective divide to obtain NDC coordinates as a function of eye coordinates:

!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'

'
(*

'
('

'

*
'
(

(*
'

'

*
'
(

(*
'

)

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

)

!
!
!
!

"

#

$
$
$
$

%

&

1

2)(

2

2

1

z

z

z

zy

z

zx

w

w

w

z

w

y

w

x

z

y

x

eye
nf
fneye

nf
nf

eye
eye

bt
bteye

bt
n

eye
eye

lr
lreye

lr
n

clip
clip

clip
clip

clip
clip

clip
clip

NDC
NDC
NDC

Now we need only focus on each individual equation for the NDC components. If we can obtain these equations
from the properties we mentioned above, then we have effectively derived the perspective depth transformation
matrix.

For the NDC x coordinate, we need to derive the following equation:

z

zx

x eye

eye
lr
lreye

lr
n

NDC
'

*
'
(

(*
')

2

We can derive this from our frustum geometry by projecting the eye space point onto the viewplane:

(x,-N)

(eyex,eyez)

+X

X=r

-Z

X=l

Z=-n Z=-f

Top View

We can find the projected x value using similar triangles, and then find the NDC x coordinate by normalizing
between x=l and x=r:

eyez
eyex

n
x

'
) which we can solve for x to give

z

x

eye
eyenx

'
*

)

The resulting x value is in [l,r]. We must scale and translate to map [l,r] to [-1,1]:

+ ,

+ ,

+ ,1,112

1,0

,

'-'*
'
'

)

-
'
'
-

lr
lxNDC

lr
lx

rlx

x

Now we can substitute our x value in terms of the original eye x coords to obtain the final form of the equation:

. /

. / z

zx

z

x

z

xz

x

z

x

x

eye

eye
lr
lreye

lr
n

lr
lr

eyelr
eyen

lr
lr

lr
l

eyelr
eyen

lr
l

lr
eye
eyen

lr

l
eye
eyen

NDC

'

*
'
(

(*
')

'
(

'
'*'

*
)

'
'

'
'

'
'*'

*
)'

'
'

'
'
*

)'*
'

'
'
*

)

2
2

2212
2

12

This gives us what we need:

z

zx

x eye

eye
lr
lreye

lr
n

NDC
'

*
'
(

(*
')

2

We can obtain the NDC y coordinate using the same strategy. The only difference will be the replacement of l and r
with b and t respectively, and the use of eye's y coordinate in place of the x coordinate.

+Y

(y,-N)

(eyey,eyez)

Y=t

-Z

T=b

Z=-n Z=-f

Side View

This will give us the second equation:

z

zy

y eye

eye
bt
bteye

bt
n

NDC
'

*
'
(

(*
')

2

The most interesting and complex NDC coordinate equation is for the z component. We will use our knowledge of
the projection of the points and the preservation of lines in NDC space to derive the following equation:

z

z

z eye
nf
fneye

nf
nf

NDC
'

'
'

(*
'
('

)

2)(

Here is the strategy we will take:

! Choose a line segment in eye space that is easy to characterize and write a parametric equation for the line
between its endpoints as a function of teye

! Parameterize the same line in NDC space as a function of tNDC
! Project a general point on the eye space line to the viewplane and use this equation to relate teye to tNDC
! Solve for teye as a function of tNDC
! Use this function to write an equation for a point along the line in NDC space as a function of teye instead of tNDC
! Solve for the NDC point's z value in terms of tNDC
! Write tNDC as a function of the eye space point's z value
! Use previous two equations to solve for the NDC point's z value in terms of eye space point's z value. This is

what we want!

First we will show the frustum geometry in eye space and in NDC space, the chosen line endpoints and their
mapping between eye and NDC space (AB in eye space, ab in NDC space), and an arbitrary linearly interpolated
point along each line (P in eye space, p in NDC space):

+X

-Z

P(teye)

B

A

X=-1

+X

p(tNDC)

b

a

X=-1

X=1

X=1

+Z

Z=-1 Z=1
Z=-n Z=-f

The choice of line segment endpoints is somewhat arbitrary. We chose this configuration to simplify the derivation
of the z coordinate equation. In addition, we simply assume a symmetric frustum with viewplane window
boundaries (l,r,b,t)=(-1,1,-1,1). These simplifications do not change the generality of the final z equation since the
final result does not depend on these values. From the figure above we have the following equations:

Eye Space NDC (Screen) Space
Ax=1 Bx=0 ax=1 bx=0
Az=-n Bz=-f az=-1 bz=1
P(teye)=A + (B-A)*teye p(tNDC)=a + (b-a)*tNDC

The chosen endpoints in eye space have an obvious mapping to NDC space. We need only find the z equation that
preserves the lines between the endpoints in both spaces. We first need to relate the two parametric values t. We can
obtain an equation containing both by simply applying the projection to the point P(teye) and finding its x value in
NDC space. Since we have chosen a simple symmetric normalized viewing frustum the projection can be found
using similar triangles (as shown before for the x coordinate equation derivation):

)(
)(

)(
eyez

eyex
NDCx tP

tPn
tp

'

*
)

We can then substitute the full equation for the interpolated points and solve for tNDC in terms of teye:

. /
. /eyezzz

eyexxx
NDCxxx tABA

tABAn
taba

*'('

'(
)*'(

)(
)(

)(

To simplify the problem, we can substitute all of our known values from the table:

. /
. /eye

eye
NDC tnfn

tn
t

*('(''

'(
)*'(

)(
)10(1

)10(1

Now we can easily solve for tNDC:

eye

eye
NDC tfnn

tnn
t

*''
*'

)'
)(

1

eye

eye
NDC tfnn

tf
t

*''

*
)

)(

We can now use this function to write an equation for an interpolated point’s z value along the line in NDC space as
a function of teye instead of tNDC:

NDCzzzNDCz tabatp *'())()(

eye

eye
zzz

eye

eye
z tfnn

tf
aba

tfnn
tf

p
*''

*
*'()0

0
1

2
3
3
4

5

*''

*

)(
)(

)(

substitute known quantities for NDC space endpoint coordinates and simplify:

eye

eye
eyez tfnn

tf
tp

*''

*
*((')

)(
)11(1)(

eye

eye
eyez tnfn

tfnn
tp

*'(
*(('

)
)(
)(

)(

Our ultimate goal is to obtain the general equation for the NDC space z coordinate (pz) in terms of the eye space z
coordinate (Pz). We can use the interpolated point equation for an eye space point to solve for teye in terms of the eye
space z coordinates:

eyezzzeyez tABAtP *'())()(

zz

zz
eye AB

APt
'
'

)

We can then use this equation to obtain NDC space z in terms of eye space z:

zz

zz

zz

zz

zz

zz
z

AB
APnfn

AB
APfnn

AB
APp

'
'

*'(

'
'

*(('
)00

1

2
33
4

5
'
'

)(

)(

We can then substitute our known values for the eye space endpoints (A,B):

fn
nPnfn

fn
nPfnn

Pp
z

z

zz

'
(

*'(

'
(

*(('
)

)(

)(
)(

We can the simplify this equation to obtain the desired form for the z coordinate equation:

fn
nPfnn

fn
nPnfnPf

fn
fnn

z

zz

'
(

*''

'
(*((*

(
'
'*'

)
)(

)(2

z

zz

P
fn

nPnfnPffnn

'
'

(*((*(('

)

22

z

zz

P
fn

PnPffn

'
'

((

)

2

z

zz

P
nf

PnPffn

'
'

'''

)

2

z

z

P
nf

fnP
nf
nf

'
'

'*
'
('

)

2)(

Remember that pz is the NDC space z (NDCz) and Pz is the eye space z (eyez), so we can then substitute to obtain the
exact form from the perspective transformation matrix:

z

z

z eye
nf
fneye

nf
nf

NDC
'

'
'

(*
'
('

)

2)(

We have now completed the entire derivation of the perspective depth transformation matrix!

OpenGL’s Perspective Projection Matrix
(based on Kenny Hoff’s http://www.cs.unc.edu/~hoff/techrep/perspective.doc)

OpenGL’s perspective projection matrix M maps from 3d eyespace to 2d normalized device
coordinates (NDC):

!
!
!

"

#

$
$
$

%

&
6

!
!
!
!

"

#

$
$
$
$

%

&

*

z

y

x

z

y

x

NDC
NDC
NDC

eye
eye
eye

M

1

The matrix is given by

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

'
'

'
'
('
'
(

'

'
(

'

0100

2)(00

020

002

nf
fn

nf
nf

bt
bt

bt
n

lr
lr

lr
n

The matrix has several properties, which we will utilize in its derivation.

1. The view frustum defined by the parameters (left, right, bottom, top, near, far) is mapped to
the canonical view volume in (-1, 1, -1, 1, -1, 1).

Eyespace NDC
left, right -1, 1
bottom, top -1, 1
near, far -1, 1

2. The signs of the z-values are reversed. This is because in eyespace, the view is down the –z-
axis, whereas in NDC, the view is down the +z-axis.

3. Lines and depth values are preserved for correct perspective viewing and the z-buffer
algorithm.

4. Orthographic projection into device-dependent screen coordinates yields a perspectively-
correct view.

Before starting the derivation, write the linear equations that correspond to the matrix.

http://www.cs.unc.edu/~hoff/techrep/perspective.doc

z

zx

x eye

eye
lr
lreye

lr
n

NDC
*

'
(

(*
')

2

z

zy

y eye

eye
bt
bteye

bt
n

NDC
*

'
(

(*
')

2

nf
nf
fneye

nf
nf

NDC
z

z '
'

'
(*

'
(

'
)

2

First, derive the equation for NDCx.

Step 1. Project the eyex onto the near plane z = -n using similar triangles.

n
eye
eyex

z

x *
'

)'

Step 2. Scale and translate the resulting coordinates to map them to the canonical view volume.

+ ,1,0'
-

'
'

lr
lx so + ,1,11'2 '-'

'
'

*
lr
lx

Substituting the equation under Step 1. for x’ in Step 2. above, we get

z

zx
z

x

x eye

eye
lr
lreye

lr
n

lr

ln
eye
eye

lr
lxNDC

'

*
'
(

(*
')'

'

'*
'

*)'
'
'

*)

2

121'2

z

zx

x eye

eye
lr
lreye

lr
n

NDC
*

'
(

(*
')

2

Note that the equation for NDCy utilizes an identical derivation, so that eyey replaces eyex, and b,
t replace l, r.

z

zy

y eye

eye
bt
bteye

bt
n

NDC
*

'
(

(*
')

2

Now, derive the equation for NDCz.

Step 1. Draw a line in eyespace and a corresponding line in NDC, such that their parametric
equations are easy to determine. Set up a table of the lines’ endpoint labels and values.

The parametric equations are easy to determine if (a) the endpoints of the lines have known
values and (b) one of the endpoints is at x=0. So draw a line in eyespace (a) between the near
plane and the far plane with (b) one of the endpoints at x=0.

Let A, B be the endpoints of the line in eyespace, and let a, b be the corresponding endpoints of
the line in NDC. Let P be an arbitrary point on the line in eyespace, and let p be the
corresponding point on the line in NDC. Let teye be the weight in the parametric equation for the
line in eyespace, and let tNDC be the weight of the parametric equation for the line in NDC.

Eyespace NDC
Ax=1 ax=1
Az=-n az=1
Bx=0 bx=0
Bz=-f bz=1

Our goal is to find NDCz(eyez) = pz(Pz).

Step 2. Solve for NDCz in terms of eyez by substituting equations for eyez and NDCz, substituting
values for the endpoints of the lines, and doing algebraic rearrangement.

The equations for the lines in eyespace and in NDC are

eyeeye tABAtP *'())()(
and

NDCNDC tabatp *'())()(

From the earlier derivation of NDCx using similar triangles, we saw that, before mapping to the
canonical view volume

)(
)(

)(
eyez

eyex
eyex tP

tPn
tp

'

*
)

Since px(tNDC) = px(teye), then we can set the equations for these labels equal to each other to get

))((
)(

)(
eyezzz

eyexxx
NDCxxx tABA

tABA
ntaba

*'('

*'(
)'(

Substitute the values of the endpoints into their labels to get

))((
)01(0

)01(0
eye

eye
NDC tnfn

t
nt

*('(''

*'(
)'(

Solve for tNDC to get

eye

eye
NDC tfnn

tf
t

*''

*
)

)(

Substitute the equation for tNDC into the equation for pz(tNDC) to get pz(teye)

eye

eye
zzzeyez tfnn

tf
abatp

*''

*
*'()

)(
)()(

Substitute the values for the endpoints into the above equation to get

eye

eye

eye

eye

eye

eye
eyez tnfn

tfnn
tfnn

tf
tfnn

tf
tp

*'(

*(('
)

*''

*
*(')

*''

*
*((')

)(
)(

)(
21

)(
)11(1)(

Remember that our goal is to find NDCz(eyez) = pz(Pz). Solve the equation for Pz(teye) for teye

zz

zz
zeye AB

APPt
'
'

))(

…And substitute the equation for teye(Pz) into the equation for pz(teye)

z

z

zz

zz

zz

zz

zz P
nf

fnP
nf
nf

AB
APnfn

AB
APfnn

Pp '
'*

'
('

)

'
'

*'(

'
'

*(('
)

2)(

)(

)(
)(

Since Pz = eyez and pz = NDCz, then we have completed the derivation of the equation for NDCz.

nf
nf
fneye

nf
nf

NDC
z

z '
'

'
(*

'
(

'
)

2

