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We define a viewing frustum in terms of the six planar boundaries defined by l, r, b, t, n, and f (represents left, right, 
bottom, top, near, and far planes respectively). The eye (or center of projection) is at the origin, the viewing 
direction is down the -Z axis, the projection or viewing plane is at z=-n, the near and far planes are defined as z=-n 
and z=-f respectively, the viewplane window is defined by rectangle with x extents [l,r] and y extents [b,t] on the z=-
n plane, and the sides of the frustum are defined by the planes formed from the eye through the edges of the 
viewplane window. 

+X +Y 

X=r Y=t

-Z -Z 

X=l Y=b

Z=-n Z=-f Z=-n Z=-f

Top View Side View 

The perspective depth transformation matrix is defined as from the geometry as follows (from the glFrustum call in 
OpenGL): 
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Our goal is to derive this matrix from the frustum geometry and the mapping between the eye-space points and 
normalized device coordinates (NDC or screen space after the perspective divide). The resulting points in NDC 
space are warped so that an orthographic projection will give the proper perspective viewing, lines will be preserved, 
and the resulting z values will give the proper visibility relationships. We can transform a 3d point in eye space by 
M to obtain a point in 4D homogeneous (or clipping) space, and then perform a normalization by dividing all 
components by w to obtain a point in NDC coordinates: 
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For eye points inside of the frustum: 

+ ,wwzyx clipclipclipclipclip ,,, '-  

If we perform the perspective divide (homogeneous normalization), we obtain NDC coordinates: 
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For points inside the frustum: 

+ ,1,1,, '-zyx NDCNDCNDC  

This means that all points in the frustum in eye space map to the unit cube in NDC space defined between [-1,1] for 
x, y, and z components after the perspective depth transformation (perspective transformation and perspective 
divide). More specifically, we have the following mapping: 
 

Points in eye space Points in NDC space 
Left and right planes x=-1and x=1 planes respectively 
Bottom and top planes y=-1 and y=1 planes respectively 
Near and far planes z=-1 and z=1 planes respectively 

 



Note that in eye space, we are looking down the -Z axis, but in NDC space we are looking down the +Z axis. The Z 
coordinates become negated in the perspective depth transformation: 

-Z 

+X 

X=-1 

X=1 

+X 

X=r 

+Z 

X=l 

Z=-1 Z=1 
Z=-n Z=-f 

Transformation from eye space to NDC space warps points in the perspective frustum to a 
rectangular, normalized viewing frustum where lines and depth values are preserved, and a simple 
orthographic projection will give the proper view. 

We will first combine the matrix multiplication and perspective division into one equation for each NDC coordinate 
as a function of the input eye coordinates. We will then show how to derive each one of these equations from the 
frustum geometry, the desired mapping between the frustum points and the NDC unit cube, and the following 
properties of the perspective depth transformation: 

! The x and y NDC coordinates will be the normalized coordinates of the eye space point projected onto the 
viewplane (near plane). 

! The z coordinate in NDC space will be transformed such that lines in eye space are transformed into lines 
in NDC space. This is needed in order to allow for linear interpolation in screen space of depth values 
during polygon rasterization that will preserve the proper visibility ordering. 

Let's first write the equations for each component directly from the perspective depth transformation and the 
perspective divide: 
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We can rewrite this as four separate equations, one for each homogeneous (clip) component: 
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We can perform the perspective divide to obtain NDC coordinates as a function of eye coordinates: 
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Now we need only focus on each individual equation for the NDC components. If we can obtain these equations 
from the properties we mentioned above, then we have effectively derived the perspective depth transformation 
matrix. 

For the NDC x coordinate, we need to derive the following equation: 
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We can derive this from our frustum geometry by projecting the eye space point onto the viewplane: 
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Top View 

We can find the projected x value using similar triangles, and then find the NDC x coordinate by normalizing 
between x=l and x=r: 
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The resulting x value is in [l,r]. We must scale and translate to map [l,r] to [-1,1]: 
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Now we can substitute our x value in terms of the original eye x coords to obtain the final form of the equation: 
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This gives us what we need: 
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We can obtain the NDC y coordinate using the same strategy. The only difference will be the replacement of l and r 
with b and t respectively, and the use of eye's y coordinate in place of the x coordinate. 
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This will give us the second equation: 
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The most interesting and complex NDC coordinate equation is for the z component. We will use our knowledge of 
the projection of the points and the preservation of lines in NDC space to derive the following equation: 
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Here is the strategy we will take: 

! Choose a line segment in eye space that is easy to characterize and write a parametric equation for the line 
between its endpoints as a function of teye 

! Parameterize the same line in NDC space as a function of tNDC 
! Project a general point on the eye space line to the viewplane and use this equation to relate teye to tNDC 
! Solve for teye as a function of tNDC 
! Use this function to write an equation for a point along the line in NDC space as a function of teye instead of tNDC 
! Solve for the NDC point's z value in terms of tNDC 
! Write tNDC as a function of the eye space point's z value 
! Use previous two equations to solve for the NDC point's z value in terms of eye space point's z value. This is 

what we want! 



First we will show the frustum geometry in eye space and in NDC space, the chosen line endpoints and their 
mapping between eye and NDC space (AB in eye space, ab in NDC space), and an arbitrary linearly interpolated 
point along each line (P in eye space, p in NDC space): 
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The choice of line segment endpoints is somewhat arbitrary. We chose this configuration to simplify the derivation 
of the z coordinate equation. In addition, we simply assume a symmetric frustum with viewplane window 
boundaries (l,r,b,t)=(-1,1,-1,1). These simplifications do not change the generality of the final z equation since the 
final result does not depend on these values. From the figure above we have the following equations: 
 

Eye Space NDC (Screen) Space 
Ax=1 Bx=0 ax=1 bx=0 
Az=-n Bz=-f az=-1 bz=1 
P(teye)=A + (B-A)*teye p(tNDC)=a + (b-a)*tNDC

The chosen endpoints in eye space have an obvious mapping to NDC space. We need only find the z equation that 
preserves the lines between the endpoints in both spaces. We first need to relate the two parametric values t. We can 
obtain an equation containing both by simply applying the projection to the point P(teye) and finding its x value in 
NDC space. Since we have chosen a simple symmetric normalized viewing frustum the projection can be found 
using similar triangles (as shown before for the x coordinate equation derivation): 
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We can then substitute the full equation for the interpolated points and solve for tNDC in terms of teye: 
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To simplify the problem, we can substitute all of our known values from the table: 
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Now we can easily solve for tNDC: 
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We can now use this function to write an equation for an interpolated point’s z value along the line in NDC space as 
a function of teye instead of tNDC: 
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substitute known quantities for NDC space endpoint coordinates and simplify: 
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Our ultimate goal is to obtain the general equation for the NDC space z coordinate (pz) in terms of the eye space z 
coordinate (Pz). We can use the interpolated point equation for an eye space point to solve for teye in terms of the eye 
space z coordinates: 
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We can then use this equation to obtain NDC space z in terms of eye space z: 
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We can then substitute our known values for the eye space endpoints (A,B): 
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We can the simplify this equation to obtain the desired form for the z coordinate equation: 
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Remember that pz is the NDC space z (NDCz) and Pz is the eye space z (eyez), so we can then substitute to obtain the 
exact form from the perspective transformation matrix: 
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We have now completed the entire derivation of the perspective depth transformation matrix! 



OpenGL’s Perspective Projection Matrix 
(based on Kenny Hoff’s http://www.cs.unc.edu/~hoff/techrep/perspective.doc ) 

 
OpenGL’s perspective projection matrix M maps from 3d eyespace to 2d normalized device 
coordinates (NDC): 
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The matrix is given by 
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The matrix has several properties, which we will utilize in its derivation. 
 
1. The view frustum defined by the parameters (left, right, bottom, top, near, far) is mapped to 
the canonical view volume in (-1, 1, -1, 1, -1, 1). 
 
Eyespace NDC 
left, right -1, 1 
bottom, top -1, 1 
near, far -1, 1 
 
2. The signs of the z-values are reversed. This is because in eyespace, the view is down the –z-
axis, whereas in NDC, the view is down the +z-axis. 
 
3. Lines and depth values are preserved for correct perspective viewing and the z-buffer 
algorithm. 
 
4. Orthographic projection into device-dependent screen coordinates yields a perspectively-
correct view. 
 
Before starting the derivation, write the linear equations that correspond to the matrix. 
 

http://www.cs.unc.edu/~hoff/techrep/perspective.doc
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First, derive the equation for NDCx. 
 
Step 1. Project the eyex onto the near plane z = -n using similar triangles. 
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Step 2. Scale and translate the resulting coordinates to map them to the canonical view volume. 
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Substituting the equation under Step 1. for x’ in Step 2. above, we get 
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Note that the equation for NDCy utilizes an identical derivation, so that eyey replaces eyex, and b, 
t replace l, r. 
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Now, derive the equation for NDCz. 



 
Step 1. Draw a line in eyespace and a corresponding line in NDC, such that their parametric 
equations are easy to determine. Set up a table of the lines’ endpoint labels and values. 
 
The parametric equations are easy to determine if (a) the endpoints of the lines have known 
values and (b) one of the endpoints is at x=0. So draw a line in eyespace (a) between the near 
plane and the far plane with (b) one of the endpoints at x=0. 
 
Let A, B be the endpoints of the line in eyespace, and let a, b be the corresponding endpoints of 
the line in NDC. Let P be an arbitrary point on the line in eyespace, and let p be the 
corresponding point on the line in NDC. Let teye be the weight in the parametric equation for the 
line in eyespace, and let tNDC be the weight of the parametric equation for the line in NDC. 
 
Eyespace NDC 
Ax=1 ax=1 
Az=-n az=1 
Bx=0 bx=0 
Bz=-f bz=1 
 
Our goal is to find NDCz(eyez) = pz(Pz). 
 
Step 2. Solve for NDCz in terms of eyez by substituting equations for eyez and NDCz, substituting 
values for the endpoints of the lines, and doing algebraic rearrangement. 
 
The equations for the lines in eyespace and in NDC are 
 

eyeeye tABAtP *'() )()(  
and 

NDCNDC tabatp *'() )()(  
 
From the earlier derivation of NDCx using similar triangles, we saw that, before mapping to the  
canonical view volume 
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Since px(tNDC) = px(teye), then we can set the equations for these labels equal to each other to get 
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Substitute the values of the endpoints into their labels to get 
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Solve for tNDC to get 
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Substitute the equation for tNDC into the equation for pz(tNDC) to get pz(teye) 
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Substitute the values for the endpoints into the above equation to get 
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Remember that our goal is to find NDCz(eyez) = pz(Pz). Solve the equation for Pz(teye) for teye
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…And substitute the equation for teye(Pz) into the equation for pz(teye) 
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Since Pz = eyez and pz = NDCz, then we have completed the derivation of the equation for NDCz. 
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